Oxidation number

The charge the atom would have in a molecule (or an ionic compound) if electrons were completely transferred.

1. Free elements (uncombined state) have an oxidation number of zero.

Na, Be, K, Pb,
$$H_2$$
, O_2 , $P_4 = 0$

2. In monatomic ions, the oxidation number is equal to the charge on the ion.

Li⁺, Li = +1; Fe³⁺, Fe = +3;
$$O^{2-}$$
, O = -2

3. The oxidation number of oxygen is **usually** –2. In H_2O_2 and O_2^{2-} it is –1.

- The oxidation number of hydrogen is +1 except when it is bonded to metals in binary compounds. In these cases, its oxidation number is -1.
- 5. Group IA metals are +1, IIA metals are +2 and fluorine is always -1.
- The sum of the oxidation numbers of all the atoms in a molecule or ion is equal to the charge on the molecule or ion.

Oxidation numbers of all the atoms in HCO_3^- ?

 HCO_{3}^{-} O = -2 H = +1 3x(-2) + 1 + ? = -1C = +4

Balancing Redox Equations

The oxidation of Fe²⁺ to Fe³⁺ by $Cr_2O_7^{2-}$ in acid solution?

1. Write the unbalanced equation for the reaction ion ionic form.

$$Fe^{2+} + Cr_2O_7^{2-} \longrightarrow Fe^{3+} + Cr^{3+}$$

2. Separate the equation into two half-reactions.

Oxidation:
$$Fe^{2+} \longrightarrow Fe^{3+}$$

Reduction: $Cr_2O_7^{2-} \longrightarrow Cr^{3+}$

3. Balance the atoms other than O and H in each half-reaction.

$$Cr_2O_7^{2-} \longrightarrow 2Cr^{3+}$$

Balancing Redox Equations

4. For reactions in acid, add H_2O to balance O atoms and H⁺ to balance H atoms.

 $Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$ $14H^+ + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

5. Add electrons to one side of each half-reaction to balance the charges on the half-reaction.

$$Fe^{2+} \longrightarrow Fe^{3+} + \underbrace{1e^{-}}_{6e^{-}} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$$

6. If necessary, equalize the number of electrons in the two halfreactions by multiplying the half-reactions by appropriate coefficients.

$$6Fe^{2+} \longrightarrow 6Fe^{3+} + 6e^{-}$$

 $6e^{-} + 14H^{+} + Cr_2O_7^{2-} \longrightarrow 2Cr^{3+} + 7H_2O$

Balancing Redox Equations

7. Add the two half-reactions together and balance the final equation by inspection. The number of electrons on both sides must cancel.

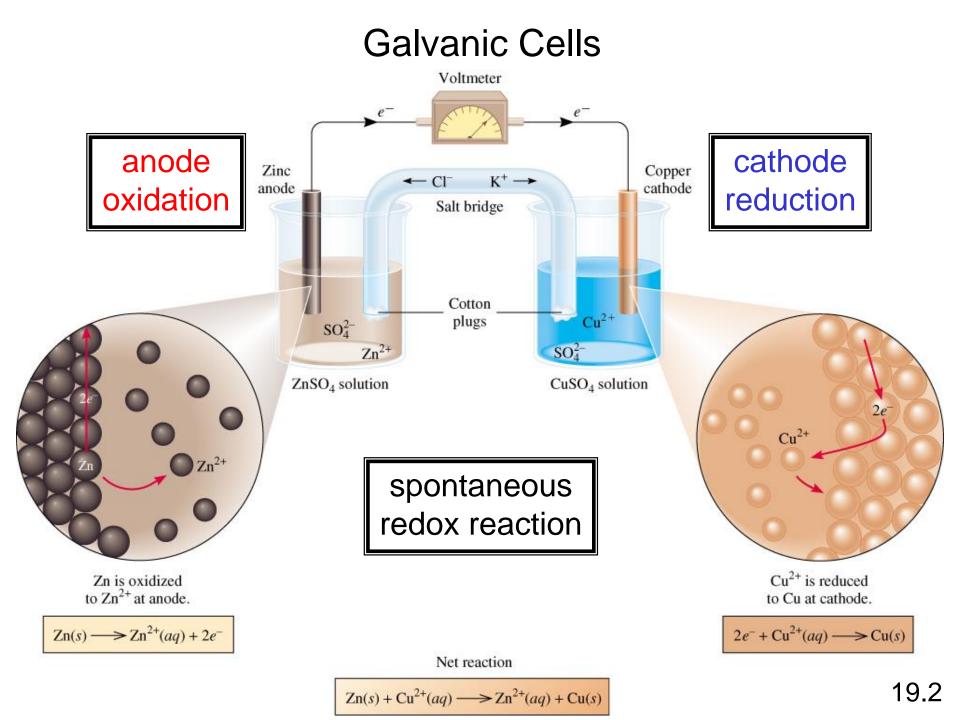
Oxidation: $6Fe^{2+} \rightarrow 6Fe^{3+} + 6e^{-1}$ Reduction: $6e^{-1} + 14H^{+} + Cr_2O_7^{2-} \rightarrow 2Cr^{3+} + 7H_2O^{-1}$ $14H^{+} + Cr_2O_7^{2-} + 6Fe^{2+} \rightarrow 6Fe^{3+} + 2Cr^{3+} + 7H_2O^{-1}$

8. Verify that the number of atoms and the charges are balanced.

14x1 - 2 + 6x2 = 24 = 6x3 + 2x3

 Note: For reactions in basic solutions, add H₂O to the side having every an excess of O atom and add 2OH⁻ to other side of the equation to balance both H and O atoms, and so forth.

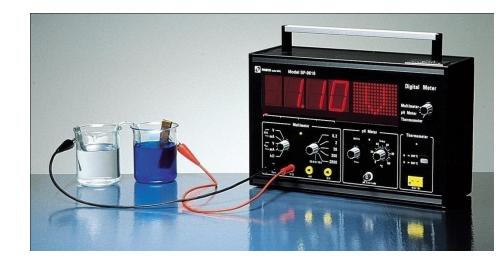
Electrochemistry


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

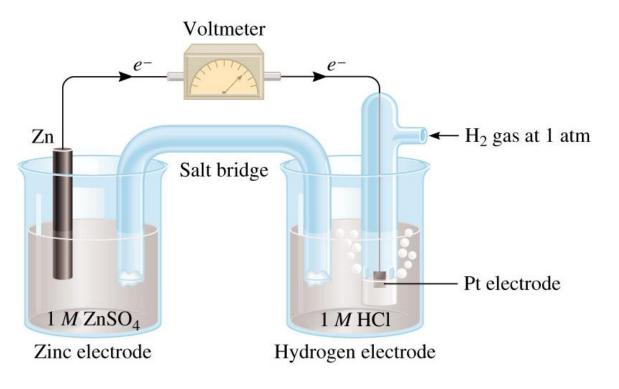
Electrochemical processes are oxidation-reduction reactions in which:

- the energy released by a spontaneous reaction is converted to electricity or
- electrical energy is used to cause a nonspontaneous reaction to occur

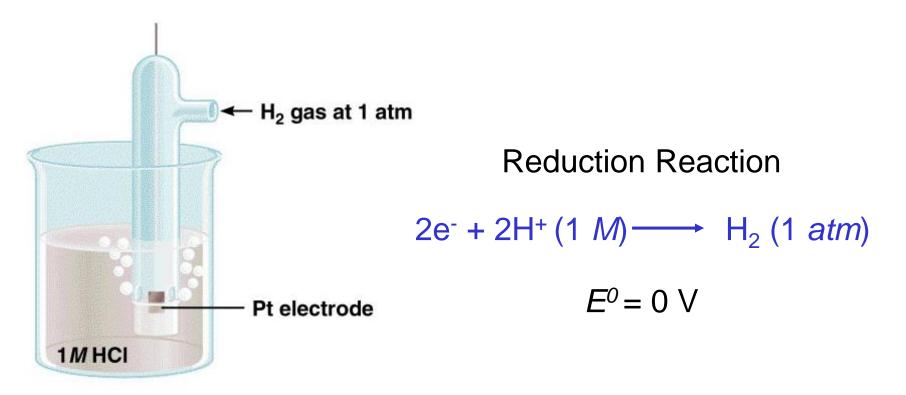
$${}^{0}_{2\text{Mg}} (s) + {}^{0}_{2} (g) \longrightarrow {}^{2+2-}_{2\text{MgO}} (s)$$


2Mg \longrightarrow 2Mg²⁺ + 4e⁻ **Oxidation** half-reaction (lose e⁻) O₂ + 4e⁻ \longrightarrow 2O²⁻ **Reduction** half-reaction (gain e⁻)

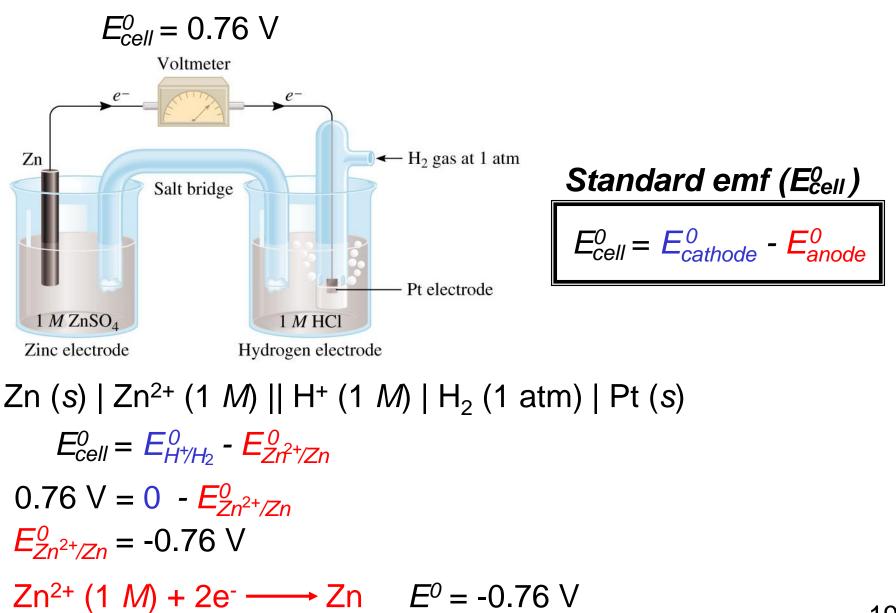
Galvanic Cells


The difference in electrical potential between the anode and cathode is called:

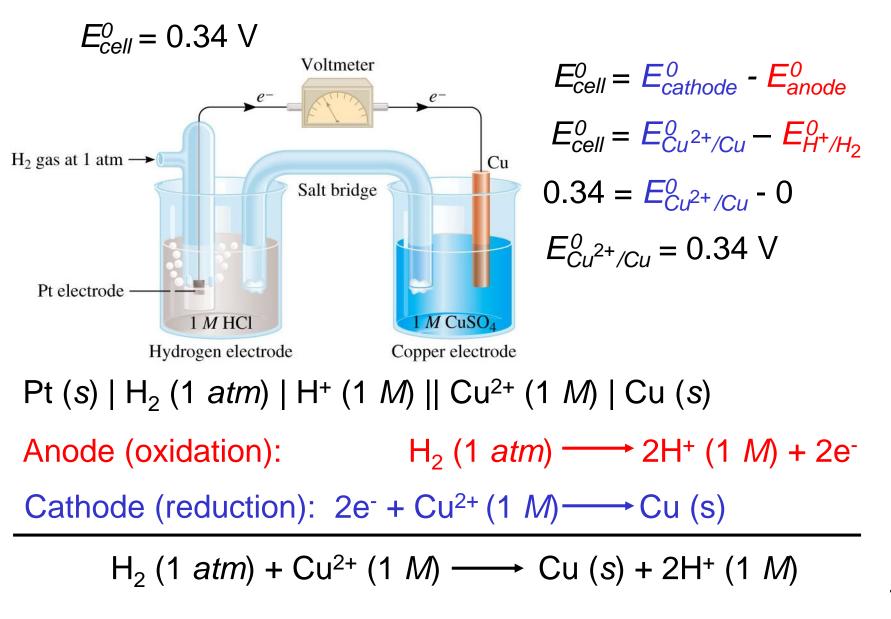
- cell voltage
- electromotive force (emf)
- cell potential


Cell Diagram $Zn (s) + Cu^{2+} (aq) \longrightarrow Cu (s) + Zn^{2+} (aq)$ $[Cu^{2+}] = 1 M \& [Zn^{2+}] = 1 M$ $Zn (s) | Zn^{2+} (1 M) || Cu^{2+} (1 M) | Cu (s)$ anode anodecathode

Standard Reduction Potentials


Zn (s) $|Zn^{2+}(1 M)|| H^{+}(1 M)| H_{2}(1 atm)| Pt (s)$ Anode (oxidation): $Zn (s) \longrightarrow Zn^{2+}(1 M) + 2e^{-1}$ Cathode (reduction): $2e^{-1} + 2H^{+}(1 M) \longrightarrow H_{2}(1 atm)$ $Zn (s) + 2H^{+}(1 M) \longrightarrow Zn^{2+} + H_{2}(1 atm)$ $2 H^+(aq) + 2 e \longrightarrow H_2(g)$ **Standard reduction potential (E**⁰) is the voltage associated with a **reduction reaction** at an electrode when all solutes are 1 *M* and all gases are at 1 atm.

Standard Reduction Potentials



Standard hydrogen electrode (SHE)

Standard Reduction Potentials

Standard Reduction Potentials

$$2 \operatorname{H}^{+}(aq) + 2 e \longrightarrow \operatorname{H}_{2}(g) \qquad E^{\circ} = 0,00 \operatorname{V}$$

$$\operatorname{Cu}^{2+}(aq) + 2 e \longrightarrow \operatorname{Cu}(s) \qquad E^{\circ} = +0,34 \operatorname{V}$$

$$\operatorname{Ag}^{+}(aq) + \mathbf{X}e \longrightarrow \operatorname{Ag}(s) \qquad E^{\circ} = +0,80 \operatorname{V}$$

$$\operatorname{Cu}(s) \longrightarrow \operatorname{Cu}^{2+}(aq) + \mathbf{X}e \qquad E^{\circ} = -0,34 \operatorname{V} + 2 \operatorname{Ag}^{+}(aq) + \operatorname{Cu}(s) \longrightarrow \operatorname{Ag}(s) + \operatorname{Cu}^{2+}(aq) \qquad E^{\circ} = +0,46 \operatorname{V} + 2 \operatorname{Ag}^{+}(aq) \parallel \operatorname{Ag}^{+}(aq) \mid \operatorname{Ag}^{+}(aq) \mid \operatorname{Ag}(s) \qquad E^{\circ}_{cell} = +0,46 \operatorname{V}$$

TABLE 19.1 Standard Reduction Potentials at 25°C*

	Half-Reaction	E°(V)	
	$F_2(g) + 2e^- \longrightarrow 2F^-(aq)$	+2.87	
	$O_3(g) + 2H^+(aq) + 2e^- \longrightarrow O_2(g) + H_2O$	+2.07	
	$\operatorname{Co}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Co}^{2+}(aq)$	+1.82	
	$H_2O_2(aq) + 2H^+(aq) + 2e^- \longrightarrow 2H_2O$	+1.77	
	$PbO_2(s) + 4H^+(aq) + SO_4^2^-(aq) + 2e^- \longrightarrow PbSO_4(s) + 2H_2O$	+1.70	
	$\operatorname{Ce}^{4*}(aq) + e^{-} \longrightarrow \operatorname{Ce}^{1*}(aq)$	+1.61	
	$MnO_4^-(aq) + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O$	+1.51	
	$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	+1.50	
	$Cl_2(g) + 2e^- \longrightarrow 2Cl^-(aq)$	+1.36	
	$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \longrightarrow 2Cr^{1+}(aq) + 7H_2O$	+1.33	
	$MnO_2(r) + 4H^+(aq) + 2e^- \longrightarrow Mn^{2+}(aq) + 2H_2O$	+1.23	
	$O_2(g) + 4H^*(aq) + 4e^- \longrightarrow 2H_2O$	+1.23	
	$Br_2(l) + 2e^- \longrightarrow 2Br^-(aq)$	+1.07	
	$NO_3^-(aq) + 4H^+(aq) + 3e^- \longrightarrow NO(g) + 2H_2O$	+0.96	
	$2Hg^{2*}(aq) + 2e^{-} \longrightarrow Hg_{2}^{2*}(aq)$	+0.92	
	$Hg_2^{2+}(aq) + 2e^- \longrightarrow 2Hg(l)$	+0.85	
	$Ag^+(aq) + e^- \longrightarrow Ag(x)$	+0.80	
	$\operatorname{Fe}^{3+}(aq) + e^{-} \longrightarrow \operatorname{Fe}^{2+}(aq)$	+0.77	
	$O_2(g) + 2H^*(aq) + 2e^- \longrightarrow H_2O_2(aq)$	+0.68	
-	$MnO_4^-(aq) + 2H_2O + 3e^- \longrightarrow MnO_2(s) + 4OH^-(aq)$	+0.59	
E.	$1_2(s) + 2e^- \longrightarrow 21^-(aq)$	+0.53	1
10	$O_2(g) + 2H_2O + 4e^- \longrightarrow 4OH^-(aq)$	+0.40	1
-E	$\operatorname{Cu}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Cu}(x)$	+0.34	3
ili i	$\operatorname{AgCl}(s) + e^{-} \longrightarrow \operatorname{Ag}(s) + \operatorname{Cl}^{-}(aq)$	+0.22	1
Increasing strength as oxidizing agent	$SO_4^{2-}(aq) + 4H^*(aq) + 2e^- \longrightarrow SO_2(g) + 2H_2O$	+0.20	mean and an and as addition and an
-	$\operatorname{Cu}^{2*}(aq) + e^{-} \longrightarrow \operatorname{Cu}^{+}(aq)$	+0.15	
勤	$\operatorname{Sn}^{4+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}^{2+}(aq)$	+0.13	10
inen a	$2H^{+}(aq) + 2e^{-} \longrightarrow H_{2}(g)$	0.00	3
20	$Pb^{2+}(aq) + 2e^- \longrightarrow Pb(s)$	-0.13	
통	$\operatorname{Sn}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$	-0.14	cin.
臣	$Ni^{2+}(aq) + 2e^{-} \longrightarrow Ni(x)$	-0.25	-
E.	$\operatorname{Co}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Co}(s)$	-0.28	3
	$PbSO_4(s) + 2e^- \longrightarrow Pb(s) + SO_4^{2-}(aq)$	-0.31	
	$Cd^{2+}(aq) + 2e^- \longrightarrow Cd(s)$	-0.40	
	$\operatorname{Fe}^{2+}(aq) + 2e^{-} \longrightarrow \operatorname{Fe}(s)$	-0.44	
	$\operatorname{Cr}^{3+}(aq) + 3e^- \longrightarrow \operatorname{Cr}(s)$	-0.74	
	$Zn^{2*}(aq) + 2e^{-} \longrightarrow Zn(x)$	-0.76	
	$2H_2O + 2e^- \longrightarrow H_2(g) + 2OH^-(aq)$	-0.83	
	$\operatorname{Mn}^{2*}(aq) + 2e^{-} \longrightarrow \operatorname{Mn}(s)$	-1.18	
	$Al^{3+}(aq) + 3e^- \longrightarrow Al(s)$	-1.66	
	$Be^{2+}(aq) + 2e^- \longrightarrow Be(s)$ $Mg^{2+}(aq) + 2e^- \longrightarrow Mg(s)$	-1.85	
		-2.37	
	$Na^+(aq) + e^- \longrightarrow Na(s)$	-2.71	
	$Ca^{2+}(aq) + 2e^- \longrightarrow Ca(s)$ $Sr^{2+}(aq) + 2e^- \longrightarrow Sr(s)$	-2.87	
	$St^{-}(aq) + 2e \longrightarrow St(s)$ $Ba^{2+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.89	
	$Ba^{+}(aq) + 2e^{-} \longrightarrow Ba(s)$	-2.90	
	$K^{*}(aq) + e^{-} \longrightarrow K(s)$ $Li^{+}(aq) + e^{-} \longrightarrow Li(s)$	-2.93	

- *E⁰* is for the reaction as written
- The more positive E⁰ the greater the tendency for the substance to be reduced
- The half-cell reactions are reversible
- The sign of *E⁰* changes when the reaction is reversed
- Changing the stoichiometric coefficients of a half-cell reaction *does not* change the value of *E*⁰

What is the standard emf of an electrochemical cell made of a Cd electrode in a 1.0 M Cd(NO₃)₂ solution and a Cr electrode in a 1.0 M Cr(NO₃)₃ solution?

 $Cd^{2+}(aq) + 2e^{-} \longrightarrow Cd(s)$ $E^{0} = -0.40 V$ Cd is the stronger oxidizer Cd will oxidize Cr $Cr^{3+}(aq) + 3e^{-} \longrightarrow Cr(s) \quad E^{0} = -0.74 \text{ V}$ Anode (oxidation): $Cr(s) \longrightarrow Cr^{3+}(1 M) + (3e^{-}) \times 2$ Cathode (reduction): $(2e^{2+} Cd^{2+} (1 M) \longrightarrow Cd (s) \times 3$ $2Cr(s) + 3Cd^{2+}(1 M) \longrightarrow 3Cd(s) + 2Cr^{3+}(1 M)$ $E_{cell}^0 = E_{cathode}^0 - E_{anode}^0$ $E_{cell}^0 = -0.40 - (-0.74)$

 $E_{cell}^{0} = 0.34 \text{ V}$

Spontaneity of Redox Reactions

 $\Delta G = -nFE_{cell}$ n = number of moles of electrons in reaction $\Delta G^0 = -nFE_{cell}^0$ $F = 96,500 \frac{J}{V \cdot mol} = 96,500 \text{ C/mol}$ $\Delta G^0 = -RT \ln K = -nFE^0_{cell}$ $E_{\text{cell}}^{0} = \frac{RT}{nF} \ln K = \frac{(8.314 \text{ K} \cdot \text{mol})(298 \text{ K})}{n (96.500 \text{ K} \cdot \text{mol})} \ln K$ E°_{cell} $E_{\rm cell}^0 = \frac{0.0257 \,\rm V}{n} \ln \rm K$ $E_{\text{cell}}^0 = \frac{0.0592 \text{ V}}{n} \log \text{K}$ ΔG° $\Delta G^{\circ} = -RT \ln K$ K

Spontaneity of Redox Reactions

TABLE 19.2	Relationships Among ΔG° , <i>K</i> , and E°_{cell}				
∆ G °	к	E _{cell}	Reaction Under Standard-State Conditions		
Negative	>1	Positive	Favors formation of products.		
0	=1	0	Reactants and products are equally favored.		
Positive	<1	Negative	Favors formation of reactants.		

$$\Delta G^0 = -RT \ln K = -nFE_{cel}^0$$

What is the equilibrium constant for the following reaction at 25°C? Fe²⁺ (aq) + 2Ag (s) \rightarrow Fe (s) + 2Ag⁺ (aq) $E_{\rm cell}^0 = \frac{0.0257 \text{ V}}{n} \ln K$ Oxidation: $2Ag \rightarrow 2Ag^+ + 2e^-$ Reduction: $2e^- + Fe^{2+} \rightarrow Fe$ n = 2 $E^{0} = E^{0}_{Fe^{2+}/Fe} - E^{0}_{Aa^{+}/Aa}$ $E^{0} = -0.44 - (0.80)$ $F^0 = -1.24$ V $K = \exp\left|\frac{E_{cell}^{0} \times n}{0.0257 \text{ V}}\right| = \exp\left|\frac{-1.24 \text{ V} \times 2}{0.0257 \text{ V}}\right|$

 $K = 1.23 \times 10^{-42}$

The Effect of Concentration on Cell Emf $\Delta G = \Delta G^0 + RT \ln Q$ $\Delta G = -nFE$ $\Delta G^0 = -nFE^0$ $-nFE = -nFE^{0} + RT \ln Q$ $E = E^0 - \frac{RI}{nE} \ln Q$ Nernst equation $R = 8,31 \text{ V C mol}^{-1} \text{ K}^{-1}$; $F = 9,65 \text{ x } 10^4 \text{ C mol}^{-1}$ At 298 $E = E^0 - \frac{0.0592 \text{ V}}{2} \log Q$ $E = E^0 - \frac{0.0257 \text{ V}}{n} \ln Q$ $E = E^{\circ} - \frac{RT}{nF} \ln \frac{[product]}{[reactant]}$ $E = E^{\circ} - \frac{0,0591 \text{ V}}{n} \log \frac{\lfloor product \rfloor}{\lceil reactant \rceil}$

 $MnO_4^-(aq) + 8 H^+(aq) + 5 e \longrightarrow Mn^{2+}(aq) + 4 H_2O(\ell)$

This means at 298 K, MnO_4^- ion ($[MnO_4^-] = 1 \text{ mol.}L^{-1}$) is a strong oxydising agent (+ 1,70 V) in acidic condition $[H^+] = 1 \text{ mol }L^{-1}$ If the pH is increased to 4,00 ($[H^+]$ decreasing to $10^{-4} \text{ mol }L^{-1}$), while MnO_4^- remains 1 mol L^{-1} , hence according to Nernst:

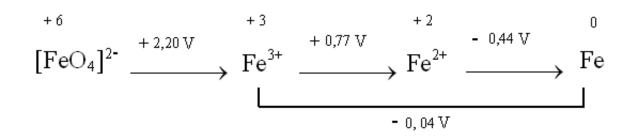
 $E^{\circ} = +1,70 \text{ V}$

$$E = +1,70 \text{ V} - \frac{8,31 \text{ V C mol}^{-1} \text{ K}^{-1} \text{ x } 298 \text{ K}}{5 \text{ x } 9,65 \text{ x } 10^{4} \text{ C mol}^{-1}} ln \frac{[\text{Mn}^{2+}]}{[\text{MnO}_{4}^{-}][\text{H}^{+}]^{8}}$$

= +1,70 \text{ V} - 5,13 \text{ x } 10^{-3} \text{ V } ln \frac{[1,00]}{[1,0][1,0 \text{ x } 10^{-4}]^{8}}
= +1,70 \text{ V} - 5,13 \text{ x } 10^{-3} \text{ V } ln (1,0 \text{ x } 10^{32})
= +1,32 \text{ V (becoming weaker)}

Will the following reaction occur spontaneously at 25°C if $[Fe^{2+}] = 0.60 M \text{ and } [Cd^{2+}] = 0.010 M?$ $Fe^{2+}(aq) + Cd(s) \longrightarrow Fe(s) + Cd^{2+}(aq)$ $Cd \longrightarrow Cd^{2+} + (2e^{-1})$ Oxidation: n = 2Reduction: $(2e^{+} + Fe^{2+} \longrightarrow 2Fe^{+})$ $E^{0} = E^{0}_{Fe^{2+}/Fe} - E^{0}_{Co^{2+}/Cd}$ $E^0 = -0.44 - (-0.40)$ $E = E^0 - \frac{0.0257 \text{ V}}{p} \ln Q$ $E^0 = -0.04 \text{ V}$ $E = -0.04 \text{ V} - \frac{0.0257 \text{ V}}{2} \ln \frac{0.010}{0.60}$ E = 0.013

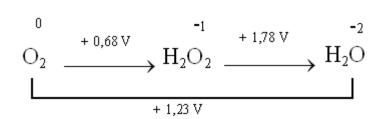
E > 0 Spontaneous

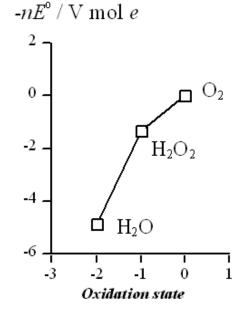

LATIMER DIAGRAM

Potential Reduction for each reduction:

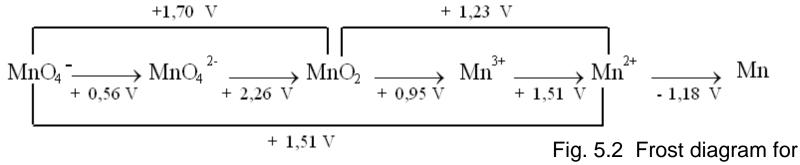
 $[\operatorname{FeO}_4]^{2^-}(aq) + 8 \operatorname{H}^+(aq) + 3 e \longrightarrow \operatorname{Fe}^{3^+}(aq) + 4 \operatorname{H}_2\operatorname{O}(\ell) \quad E^\circ = +2,20 \operatorname{V}$

$\mathrm{Fe}^{3+}\left(aq ight)$	+	е	\longrightarrow	$\mathrm{Fe}^{2+}(aq)$	$E^{\circ} = + 0,77 \text{ V}$
$\mathrm{Fe}^{2+}\left(aq ight)$	+	2 e	\longrightarrow	Fe(s)	$E^{\circ} = -0,44 \text{ V}$
$\mathrm{Fe}^{3+}\left(aq ight)$	+	3 e	\longrightarrow	Fe (<i>s</i>)	$E^{\circ} = -0.04 \text{ V}$

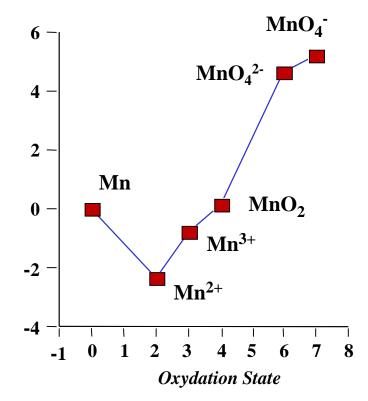

Latimer puts them in a diagram to be more informative as follows:



FROST DIAGRAM


Frost depicted a plot of oxidation number $vs DG(-nE^0)$

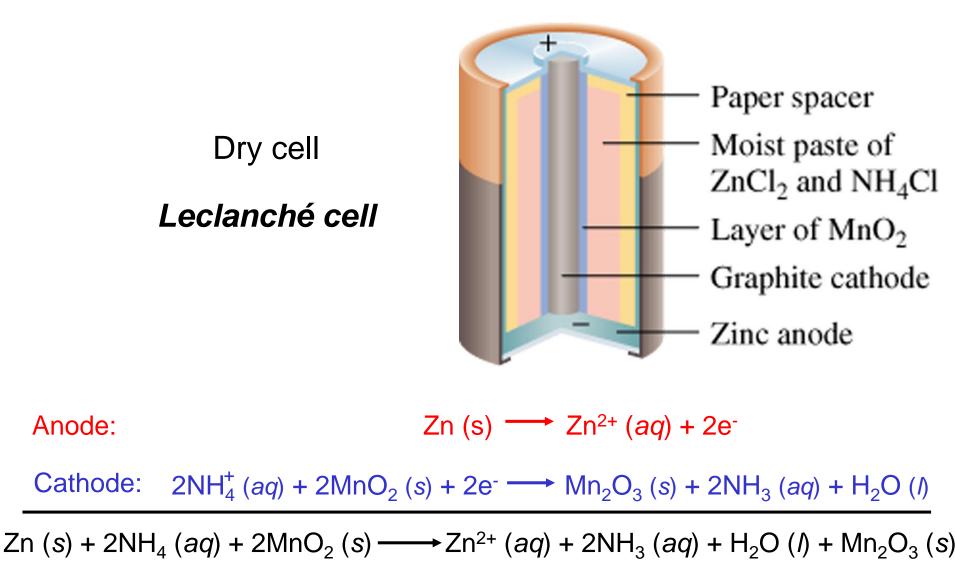
$\mathrm{H_{2}O_{2}}\left(\mathit{aq}\right)$	$+ 2 H^{+} (aq$	(q) + 2 e	\longrightarrow	$2 \operatorname{H}_{2}\operatorname{O}(\ell)$	$E^{\circ} = +1,78 \text{ V}$	
$\mathrm{H}_{2}\mathrm{O}_{2}\left(aq ight)$	$+ \longrightarrow$	$O_2(g) +$	$2 \mathrm{H}^{+}(aq)$	+ 2 e	$E^{\circ} = -0,68 \text{ V}$	
						+
$\mathrm{H_{2}O_{2}}\left(\mathit{aq}\right)$	\longrightarrow	$2 \operatorname{H_2O}(\ell)$	$+ O_2(g)$		$E^{\circ} = +1,10 \text{ V}$	

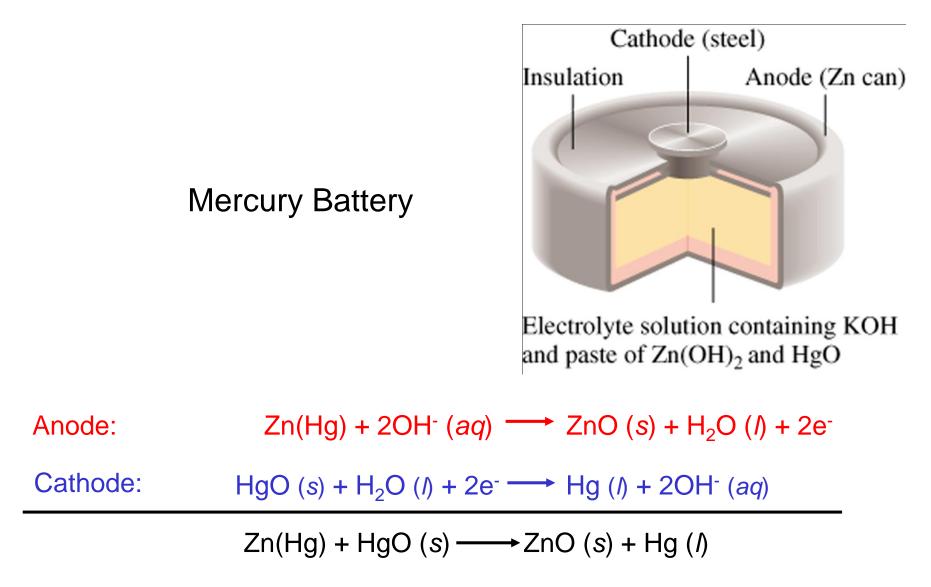


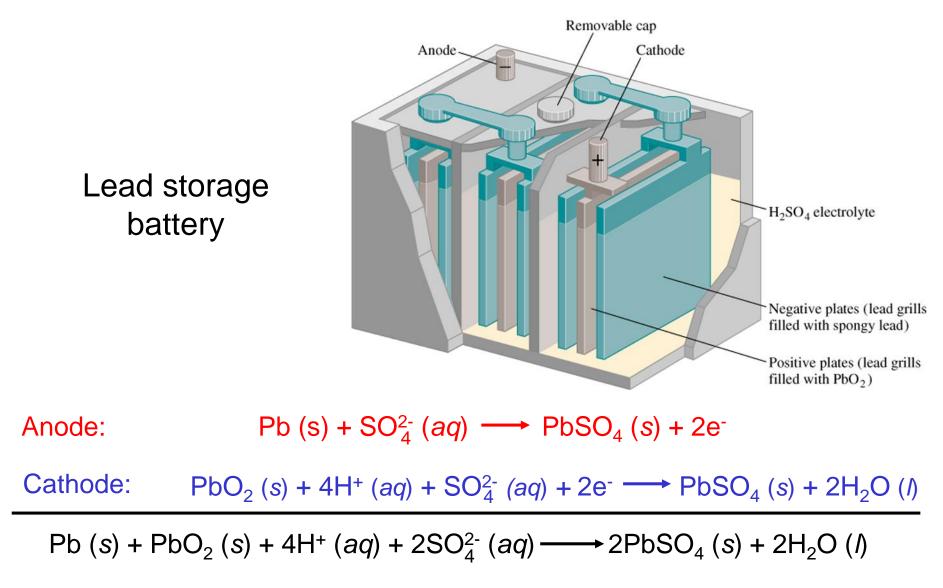
Frost diagram of O₂ in acidic solution

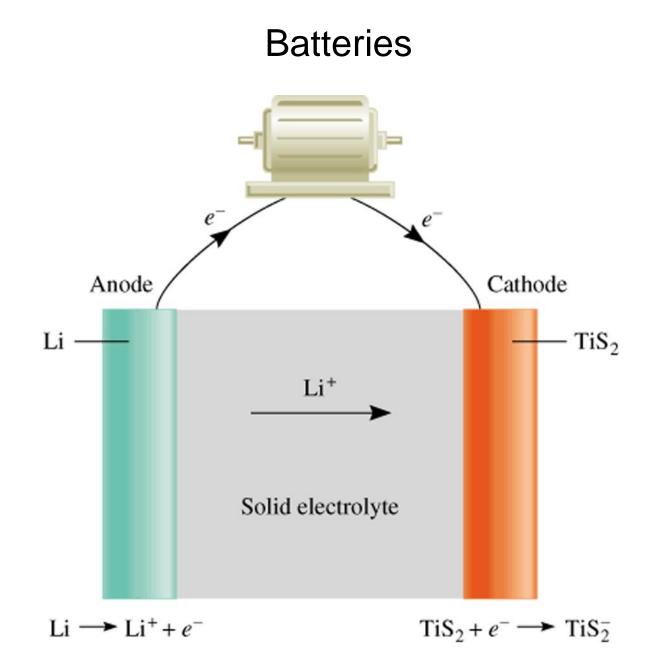
Mn in acid solution

 $-nE^{\circ}/V \mod e$

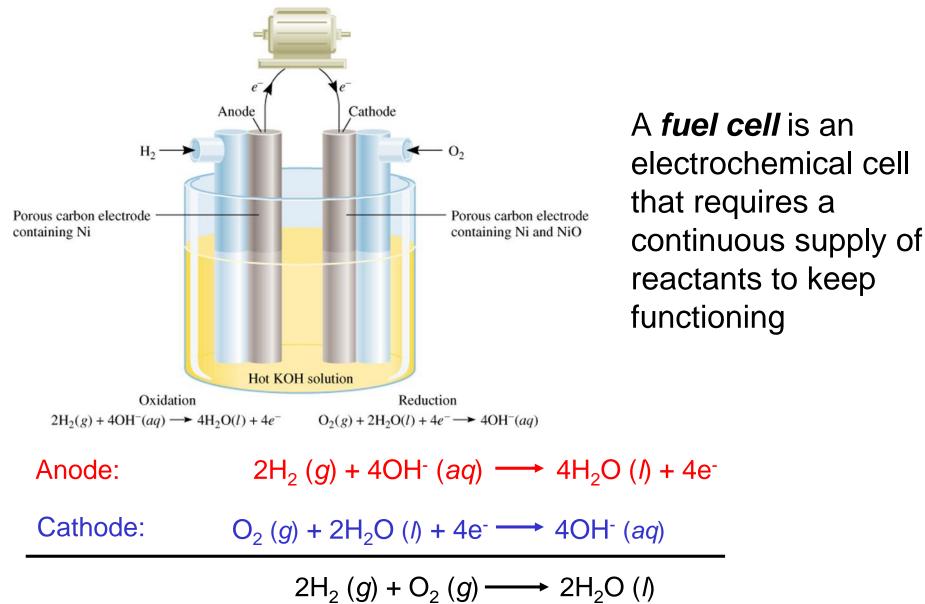

What is the
$$E^0_{cell}$$
 of this redox:
 $Ag^+(aq) + Cu(s) \rightarrow Ag(s) + Cu^{2+}(aq)$ $Ag^+(aq) + e \rightarrow Ag(s)$ $E^0 = +0.80 V$ $Cu(s) \rightarrow Cu^{2+}(aq) + 2e$ $E^0 = -0.34 V$ $2Ag^+(aq) + 2e \rightarrow 2Ag(s)$ $E^0 = +0.80 V$ $2Ag^+(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq)$ $E^0 = +0.46 V$

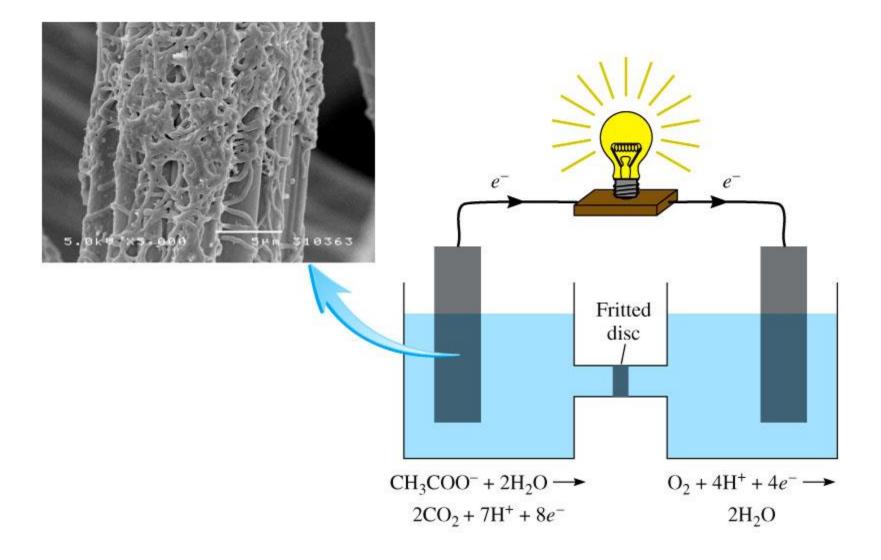

By calculating of ΔG of each half-reaction

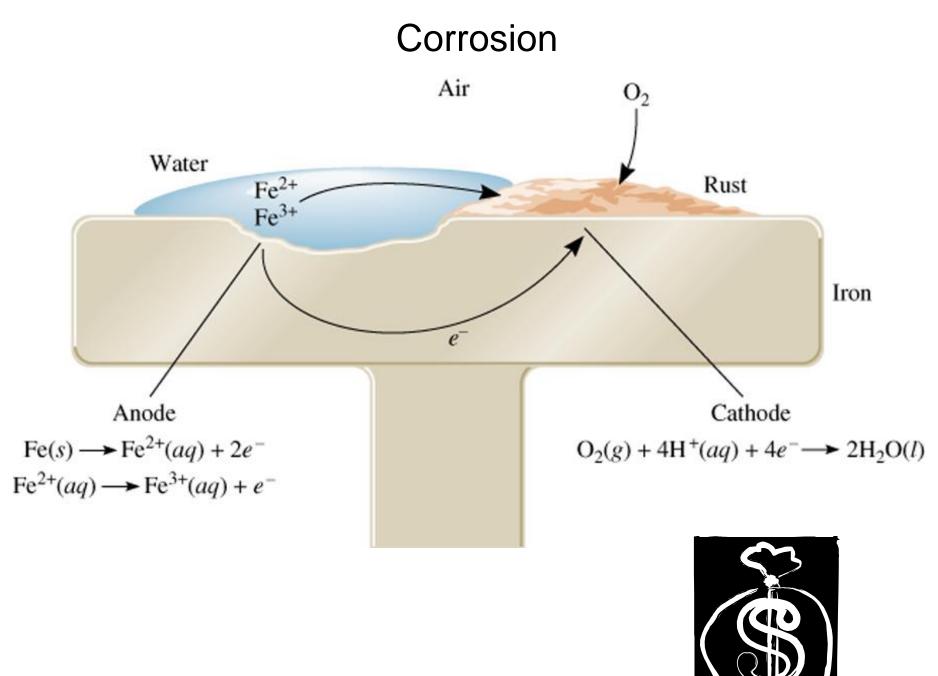

 $Cu(s) \rightarrow Cu^{2+}(aq) + 2e \ \Delta G^{0} = -nFE^{0} = -2F(-0.34V) = -0.68 \ FV$ $2Ag^{+}(aq) + 2e \rightarrow 2Ag(s) \ \Delta G^{0} = -nFE^{0} = -2F(+0.80V) = -1.60 \ FV + FV$ 4 $2Ag^{+}(aq) + Cu(s) \rightarrow 2Ag(s) + Cu^{2+}(aq) \qquad \Delta G^{0} = -0.92 \ FV$ $E^{0} = -\Delta G^{0} / nF = -(-0.92 \ FV) / 2F = +0.46 \ V$


$$\begin{array}{rcl} \operatorname{Fe}^{3+}\left(aq\right)+&e&\longrightarrow&\operatorname{Fe}^{2+}\left(aq\right)&&E^{\circ}=+\ 0,77\ \mathrm{V}\\ \operatorname{Fe}^{2+}\left(aq\right)+&2\ e&\longrightarrow&\operatorname{Fe}\left(s\right)&&E^{\circ}=-\ 0,44\ \mathrm{V} \end{array}$$

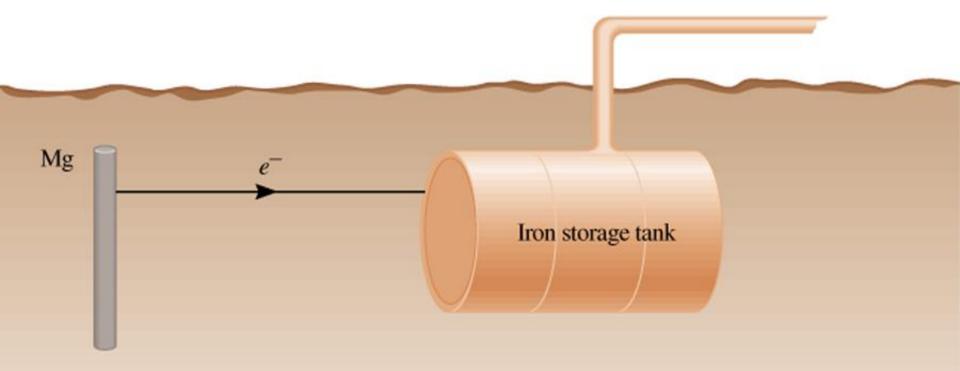
$$E^{\circ} = -\Delta G^{\circ} / nF = -0.11 \ F \ V/3F = -0.04 \ V$$



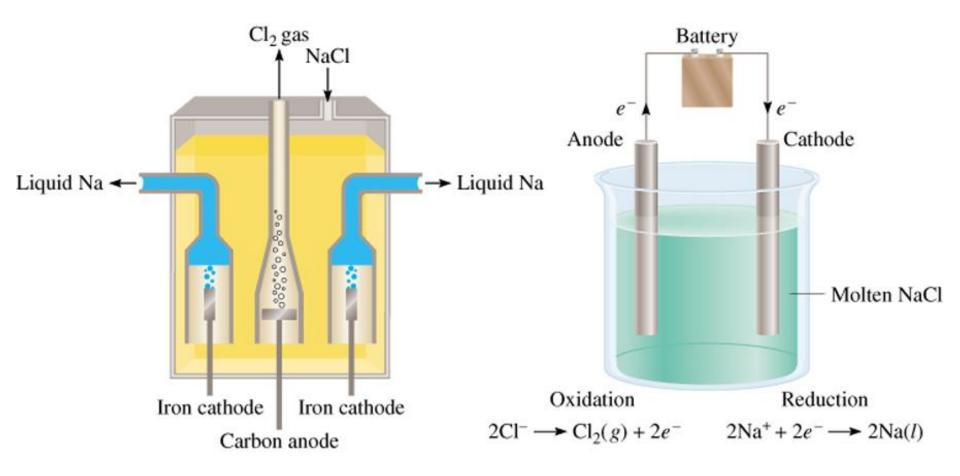


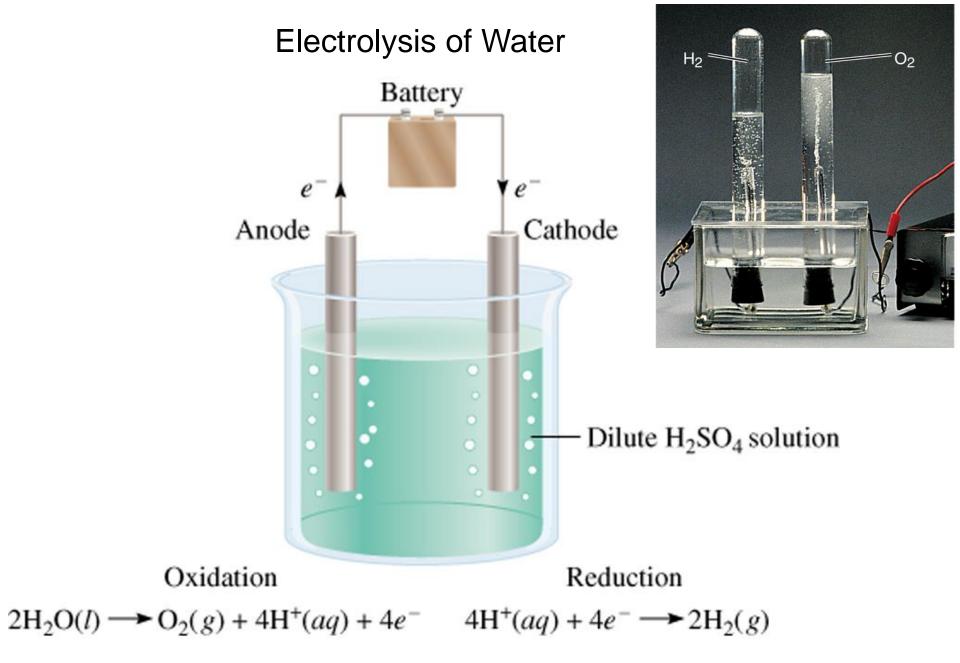

Solid State Lithium Battery

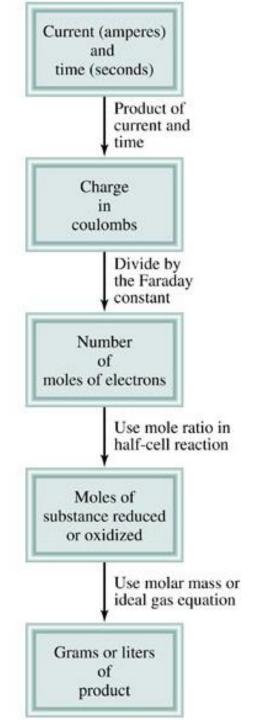
Chemistry In Action: Bacteria Power


$CH_3COO^- + 2O_2 + H^+ \longrightarrow 2CO_2 + 2H_2O$

19.7


Cathodic Protection of an Iron Storage Tank




Oxidation: $Mg(s) \rightarrow Mg^{2+}(aq) + 2e^{-}$

Reduction: $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(l)$

Electrolysis is the process in which electrical energy is used to cause a **nonspontaneous** chemical reaction to occur.

Electrolysis and Mass Changes

charge (C) = current (A) x time (s)

1 mole e⁻ = 96,500 C

How much Ca will be produced in an electrolytic cell of molten $CaCl_2$ if a current of 0.452 A is passed through the cell for 1.5 hours?

Anode:
$$2CI^{-}(I) \rightarrow CI_{2}(g) + 2e^{-}$$

Cathode: $Ca^{2+}(I) \rightarrow Ca(s)$
 $Ca^{2+}(I) + 2CI^{-}(I) \rightarrow Ca(s) + CI_{2}(g)$

2 mole
$$e^{-} = 1$$
 mole Ca

mol Ca = 0.452
$$\frac{2}{5}$$
 x 1.5 hr x 3600 $\frac{8}{5}$ x $\frac{1 \text{ mol } e^{-}}{96,500}$ x $\frac{1 \text{ mol } Ca}{2 \text{ mol } e^{-}}$

= 0.0126 mol Ca

= 0.50 g Ca

Chemistry In Action: Dental Filling Discomfort

Corrosion of a Dental Filling

Gold inlay $O_2(g) + 4H^+(aq) + 4e^- \rightarrow 2H_2O(I)$ e →Sn²⁺ Sn₈Hg-**Dental filling**

 $Hg_{2}^{2+}/Ag_{2}Hg_{3}$ 0.85 V Sn²⁺/Ag₃Sn -0.05 V Sn²⁺/Ag₃Sn -0.05 V